Abstract
The successful application of atom probe tomography (APT) relies on the accurate interpretation of the mass spectrum (i.e.m/z histogram) from a sample. Some materials yield mass spectra that are amenable to a straightforward peak assignment/ranging, however, there are many materials that produce mass spectra with features that defy simple interpretation. One such example is Ga2O3 which yields mass spectra containing several broad and difficult to interpret features. Herein, we study the GaO2+→ O1++ Ga1+ dissociation and we explain how this dissociation process gives rise to broad and previously unassigned features in the mass spectrum. Trajectory simulations are performed for the dissociation reaction utilizing realistic electrostatic models and compared to experiments using commercially available straight flight and reflectron based local electrode (LE) APT instruments. It is shown that the appearance of these features is strongly dependent on the specific design of the time-of-flight (ToF) mass analyzer. We explore how various experimental parameters can affect the appearance of the dissociation process in the one-dimensional (1D) mass spectrum and in the two-dimensional (2D) correlation histogram. While the focus of this work is on a particular dissociation process related to Ga2O3, the understanding gained in the course of these simulations and experiments should be applicable to the interpretation of dissociation processes in other materials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.