Abstract
An analysis of the luminescent center and its effect on the optical, electrical and electro-optical properties of silicon rich silicon nitride (SRN) films deposited by low pressure chemical vapor deposition is reported. As-deposited SRN films emit a broad photoluminescence (PL) spectrum in the visible range where the maximum peak shifts from ∼490 to ∼590 nm as the silicon excess increases. After thermal annealing, a PL blue-shift is observed and it is ascribed to a compositional-dependent change in the concentration of defect states within the films. A correlation between the PL peak energy with the optical band-gap indicates that the luminescence is related to the band tail carrier recombination in the SRN films. Light emitting capacitors (LECs) based on fluor-doped tin oxide SnO2:F (FTO)/SRN active layer/n-Si substrate emit a broad electroluminescent spectra where the maximum emission peak blue-shifts when the polarity is changed from reverse to forward bias. In the reverse bias, the electroluminescence (EL) is related to the states of valence band tail and Si dangling bonds (K0 centers), while in the forward bias the EL is originated from electronic transitions from the conduction band minimum to K0 centers. A model based on the trap assisted tunneling carrier transport is correlated with the proposed EL radiative recombination process in the FTO/SRN/n-Si structures. A discussion of the differences between the PL and EL spectra is reported. The results open new alternatives toward the development of Si-based light emitters where two different EL spectra can be obtained changing the polarity.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have