Abstract

DNA damage seriously threats the genomic stability and is linked to mutagenesis, carcinogenesis, and cell death. DNA damage includes the isolated damage and the clustered damages, but few approaches are available for efficient detection of the clustered damage due to its spatial distribution. Herein, we present a single-molecule counting approach with the capability of detecting both the isolated and the clustered damages in genomic DNAs. We employed the repair enzymes to remove the DNA damage and used the terminal deoxynucleotidyl transferase (TdT) to incorporate biotinylated nucleotides and fluorescent nucleotides into the damage sites in a template-independent manner. The number of total oxidative damaged bases is quantified to be 7328-7406 in a single HeLa cell treated with 150 μM H2O2. This method in combination with special repair enzymes can detect a variety of DNA damage in different types of cells, holding great potential for early diagnosis of DNA damage-related human diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call