Abstract

Abnormal expression in long noncoding RNAs (lncRNAs) is closely associated with cancers. Herein, a novel CRISPR/Cas13a-enhanced photocurrent-polarity-switching photoelectrochemical (PEC) biosensor was engineered for the joint detection of dual lncRNAs, using deep learning (DL) to assist in cancer diagnosis. After target lncRNA-activated CRISPR/Cas13a cleaves to induce DNAzyme bidirectional walkers with the help of cofactor Mg2+, nitrogen-doped carbon-Cu/Cu2O octahedra are introduced into the biosensor, producing a photocurrent in the opposite direction of CdS quantum dots (QDs). The developed PEC biosensor shows high specificity and sensitivity with limits of detection down to 25.5 aM for lncRNA HOTAIR and 53.1 aM for lncRNA MALAT1. More importantly, this platform for the lncRNA joint assay in whole blood can successfully differentiate cancers from healthy people. Furthermore, the DL model is applied to explore the potential pattern hidden in data of the established technology, and the accuracy of DL cancer diagnosis can acquire 93.3%. Consequently, the developed platform offers a new avenue for lncRNA joint detection and early intelligent diagnosis of cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.