Abstract

Ionizing radiation causes various types of DNA damage, such as single- (SSBs) and double-strand breaks (DSBs), nucleobase lesions, abasic sites (AP sites), and cross-linking between complementary strands of DNA or DNA and proteins. DSBs are among the most harmful type of DNA damage, inducing serious genetic effects such as cell lethality and mutation. Nucleobase lesions and AP sites, on the other hand, may be less deleterious and are promptly repaired by base excision repair (BER) pathways. Recently, biochemical approaches to quantify nucleobase lesions and AP sites have revealed certain types of non-strand break lesions as harmful DNA damage, called clustered DNA damage. Such clusters can retard nucleobase excision repair enzymes, and can sometimes be converted to DSBs by BER catalysis. This unique character of clustered DNA damage strongly depends on the spatial density of ionization or excitation events occurring at the track end of initial radiation or low energy secondary electrons. In particular, the photoelectric effect of elements comprising biological molecules, followed by emission of Auger electrons, are key factors in determining the future fate of each clustered damage site. This chapter describes biological studies of clustered nucleobase lesions with SSBs or AP sites, and mechanistical studies on core level excitation and Auger relaxation giving rise to clustered DNA damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call