Abstract

Perforated systems constitute one of the most important classes of mechanical metamaterials. In this work, two types of “I”‐shaped slit perforation patterns are proposed which may be used to design perforated systems that mimic the deformation mechanisms of a variety of re‐entrant and anti‐tetrachiral honeycomb systems. Using finite element analysis, it is shown how these systems have the potential to exhibit a large spectrum of negative Poisson's ratios, ranging from extremely negative to zero, which are retained over a wide tensile strain range. A detailed analysis of the deformation behavior of these systems is also presented along with a comparison of the changes in overall expansion and Poisson's ratios of both systems observed upon loading with those predicted by previously formulated theoretical models of re‐entrant and anti‐tetrachiral systems. It is hoped that this work will be of considerable aid in the efforts of scientists to understand the underlying principles governing the production of auxetic mechanical metamaterials through the use of perforations and also stimulate further research on how these and similar mechanisms may be implemented in perforated systems to design other metamaterials with anomalous mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.