Abstract

The two-dimensional theory of a distributed feedback (DFB) laser (which was previously presented and applied to the analysis of the laser threshold conditions for the transverse-electric (TE) mode in a simple three-layer waveguide structure) is developed to treat both TE and transverse-magnetic (TM) modes in a four-layer waveguide structure with a thin grating layer, which more closely reflects actual DFB laser structure. The differences between TE and TM modes for the dispersion relations and the laser threshold conditions are clarified. The effects of the waveguide structure (including grating layer thickness, refractive indexes of layers, coupling constant, and corrugation period) on the threshold gains and the gain differences between the two longitudinal modes on both sides of the Bragg frequencies are studied in detail for both TE and TM modes. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.