Abstract
Multi-phase induction motors feature a high fault-tolerance capability that makes them suitable for safety critical applications. On the other hand, concentrated winding is more fault-tolerant than conventional distributed winding. Therefore, the general idea is to use concentrated winding on the six-phase induction motor to gain more fault-tolerance capacity. Using concentrated winding has several advantages over distributed one, but it has the disadvantage of higher distortion of air gap flux density, which affects the motor performance significantly. In this paper, some concentrated windings are studied analytically by using the winding function analysis, and the layout with better performance is chosen to be compared with the conventional 2-pole distributed winding. With reference to the lamination of a 90W symmetrical six-phase induction motor, both calculation and simulation results show that the performance of the selected concentrated winding is not comparable with the distributed winding. Performance measurements from pervious works, are used for evaluation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have