Abstract
The seasonal cycles found in moored current measurements in the equatorial Somali Current region and along the equator between 50° and 60°E are compared with the multilayer Geophysical Fluid Dynamics Laboratory model for the tropical Indian Ocean. The remote forcing of Somali Current transport variations by incident long equatorial waves from the equatorial interior subthermocline region is investigated by analyzing the model velocities of annual and semiannual period. Amplitudes and phases of linear equatorial Rossby and Kelvin waves were least-squares fitted to the model velocities between 5°S and 5°N, 55° and 86°E from 100-m to 1000-m depth. Two cases of wave fits are distinguished: the “free” Kelvin wave case, where the Kelvin waves were fitted independently, and the “reflected” Kelvin wave case, where they were coupled to the Rossby waves by the western boundary condition for a straight slanted (45° to the north) coastline. The wave field velocities explained 70% of the spatial variance in the equatorial model subregion and also compared reasonably well with observed current variations along the equator. At the western boundary, the short-wave alongshore transport due to reflected incident long waves was determined and found to be antisymmetric about the equator. The maximum transport variation for the semiannual period due to the short waves was about 5 × 106 m3 s−1 between 150- and 800-m depth at 3° north and south of the equator. Observational evidence for the western boundary transport variations and the sensitivity to changes in the incident wave field are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.