Abstract

AbstractThe equatorial wave dynamics of sea level variations during negative Indian Ocean dipole (nIOD) events are investigated using the LICOM ocean general circulation model forced with the European Centre for Medium-Range Weather Forecast reanalysis wind stress and heat flux from 1990 to 2001. The work is a continuation of the study by Yuan and Liu, in which the equatorial wave dynamics during positive IOD events are investigated. The model has reproduced the sea level anomalies of satellite altimeter data well. Long equatorial waves extracted from the model output suggest two kinds of negative feedback during nIOD events: the western boundary reflection and the easterly wind bursts. During the strong 1998–99 nIOD event, the downwelling anomalies in the eastern Indian Ocean are terminated by persistent and strong upwelling Kelvin waves from the western boundary, which are reflected from the wind-forced equatorial Rossby waves over the southern central Indian Ocean. During the 1996–97 nIOD, however, the reflection of upwelling anomalies at the western boundary is terminated by the arrival of downwelling equatorial Rossby waves from the eastern boundary reflection in early 1997. Therefore, the negative feedback of this nIOD event is not provided by the western boundary reflection. The downwelling anomalies in the eastern basin during the 1996–97 nIOD event are terminated by easterly wind anomalies over the equatorial Indian Ocean in early 1997. The disclosed equatorial wave dynamics are important to the simulation and prediction of IOD evolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.