Abstract

Switchgrass (Panicum virgatum) is targeted as a biofuel feedstock species that may be grown on marginal lands including those with saline soils. Our study investigated salt stress responses in 46 switchgrass lines from the lowland and upland ecotypes by assessing physiological phenotypes and proline concentrations. Lowland switchgrass lines demonstrated less severe responses to salt stress than most upland switchgrass lines, but a number of upland lines performed as well as lowland individuals. Photosynthetic rate (Pn), the most important physiological trait measured, was reduced by salt treatment in all lines. Tolerant lines showed ∼50% reduction in Pn under salt stress, and sensitive lines exhibited ∼90% reduction in Pn after salt stress. Proline analysis showed the largest amount of variation under salt stress with some lines exhibiting minor increases in proline, but some salt-sensitive lines demonstrated more than 5000-fold increase in proline concentration in response to salt treatment. Clustering of salt-stress phenotypic responses revealed five groups of switchgrass. Lowland lines were present in two of the phenotypic clusters, but upland lines were found in all five of the phenotypic clusters. These results suggest that there are multiple modes of salt response in switchgrass including two distinct modes of salt tolerance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.