Abstract

The dynamics of the rail vehicle represents a balance between the forces acting between wheel and rail, the inertia forces and the forces exerted by suspension and articulation. Axial loading on helical spring causes vertical deflection at straight track but failures calls to investigate for lateral and longitudinal loading at horizontal and vertical curves respectively. Goods carrying vehicle has the frequent failures of middle axle inner suspension spring calls for investigation. The springs are analyzed for effect of stress concentration due to centripetal force and due to tractive and breaking effort. This paper also discusses shear failure analysis of spring at curvature and at uphill at various speeds for different loading condition analytically and by finite element analysis. Two mass rail vehicle suspension systems have been analyzed for vibration responses analytically using mathematical tool Matlab Simulink and the same will be evaluated using FFT vibration analyzer to find peak resonance in vertical, lateral and longitudinal direction. The results prove that the suspension acquires high repeated load in vertical and lateral direction due to tracking and curving causes maximum stress concentration on middle axle suspension spring as height of this spring is larger than end axle spring in primary suspension system and responsible for failure of middle axle suspension spring due to high stress acquisition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call