Abstract

This study focuses on analysing natural Radiative Heat Flux (RHF) anomalies to map out the heat distribution across the Java Island. Leveraging remote sensing techniques, we calculated natural RHF anomalies using Land Surface Temperature (LST) and Land Surface Emissivity (LSE) data obtained from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. A key aspect of our approach was distinguishing between natural and anthropogenic heat sources by cross-referencing the LST Map with the Land Use Land Cover (LULC) map of Java Island. The study interprets natural RHF anomalies by examining regional trends in non-volcanic areas and local trends within volcanic regions, considering climatological and volcanological factors. Relation with climatological factors involves assessing soil moisture parameters from Soil Moisture Active Passive (SMAP) data, precipitation from monthly Global Precipitation Measurement (GPM) data, and classifications according to the Köppen-Geiger climate schema. Our regional analysis reveals high natural RHF anomalies in the northern regions of West Java, parts of Central Java, and most of East Java, attributed to low soil moisture and low precipitation in savanna and monsoon climates. On a more localised scale, RHF values are significantly high in volcanic areas, particularly around Central and East Java's volcanoes, such as Mt. Merapi, Mt. Slamet, Mt. Semeru, the Sidoarjo Mud Volcano, and Mt. Ijen. The Natural RHF anomalies at volcanoes in West Java were identified as not being high except at Mt Patuha. These areas exhibit average natural RHF anomalies ranging between 32.22 W/m2 and 115.13 W/m2, indicating strong and intense volcanic activity. The insights obtained from these findings explain the overall thermal characteristics of Java Island and highlight the presence of subsurface thermal zones associated with volcanic activity and geothermal potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.