Abstract
ABSTRACT Land surface temperature (LST) retrieval from thermal infrared (TIR) remote sensing image requires atmospheric and land surface emissivity (LSE) data that are sometimes unattainable. To overcome this problem, a hybrid algorithm is developed to retrieve LST without atmospheric correction and LSE data input, by combining the split-window (SW) and temperature–emissivity separation (TES) algorithms. The SW algorithm is used to estimate surface-emitting radiance in adjacent TIR bands, and such radiance is applied to the TES algorithm to retrieve LST and LSE. The hybrid algorithm is implemented on five TIR bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Analysis shows that the hybrid algorithm can estimate LST and LSE with an error of 0.5–1.5 K and 0.007–0.020, respectively. Moreover, the LST error of the hybrid algorithm is equivalent to that of the original ASTER TES algorithm, involving 1%–2% uncertainty in atmospheric correction. The hybrid algorithm is validated using ground-measured LST at six sites and ASTER LST products, indicating that the temperature difference between the ASTER TES algorithm and the hybrid algorithm is 1.4 K and about 2.5–3.5 K compared to the ground measurement. Finally, the hybrid algorithm is applied to at two places.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.