Abstract

Abstract The adsorption of cationic water-soluble polymers onto negatively charged porous wood pulp fibers is an essential aspect of papermaking. Adsorption data can be displayed as a direct plot of the amount adsorbed, Γ, versus the amount of polymer added or as an isotherm plot showing the amount adsorbed versus the residual unadsorbed polymer. In either data presentation, the analysis is more transparent if the units of each axis are the same (e.g., mg/g or meq/g), giving dimensionless slopes. Values for Γmax, ΓI, f I , and Γme can be extracted from many isotherms where: Γmax is the maximum capacity of the fibers to adsorb polymer; ΓI is the y-axis isotherm intercept and gives the maximum dose that can be fully adsorbed; f I is the slope of the direct plot at ΓI, and f I is the mass fraction of the added polymer that can access interior (pore) surfaces; and, Γme is the saturated amount of polymer adsorbed on exterior surfaces. Additionally, the molecular weight distribution of the adsorbing polymer in conjunction with the adsorption isotherm can be used to estimate the molecular weight distributions of adsorbed polymer on interior and exterior fiber surfaces as functions of the polymer dose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call