Abstract

Premature ovarian insufficiency (POI) is characterized by an early decline in ovarian function, inducing secondary amenorrhea. While the cause of POI has not yet been identified, the function of mitochondria in the ovaries and the cytotoxicity associated with reactive oxygen species (ROS) have been implicated in follicle pool depletion and a decline in follicle quality. Recently developed tests have enabled easy measurement of diacron-reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP). The combination of these two tests is used to comprehensively assess oxidative stress in the blood. To comprehensively assess the oxidative stress of d-ROMs and BAP in POI. Participants were classified into two groups: A POI group of 11 women aged < 40 years examined between January 2021 and June 2022 with a history of secondary amenorrhea for at least 4 mo in our hospital and an FSH value of ≥ 40 mIU/mL; and a control group of healthy women of the same age with normal ovarian function in our hospital. Plasma d-ROMs and BAP were measured in both these groups underwent. Differences between groups were assessed using the t-test. The mean age and mean body mass index (BMI) were 35.8 ± 3.0 years and 20.1 ± 1.9 kg/m2 in the control group and 35.8 ± 2.7 years and 19.4 ± 2.5 kg/m2 in the POI group, respectively. The mean gravidity and parity in control and POI groups were 0.6 ± 0.7 and 0.4 ± 0.5 and 0.6 ± 0.9 and 0.3 ± 0.5, respectively. The two groups did not differ significantly in terms of mean age, BMI, gravidity, or parity. The d-ROMs level was significantly higher in the POI group than in the control group (478.2 ± 58.7 vs 341.1 ± 35.1 U.CARR; P < 0.001); however, the BAP level did not significantly differ between the two groups (2078.5 ± 157.4 vs 2029.0 ± 186.4 μmol/L). The oxidase stress index (d-ROMs/BAP × 100) was significantly higher in the POI group than in the control group (23.7 ± 3.3 vs 16.5 ± 2.1; P < 0.001). Oxidative stress was significantly greater in the POI group than in the control group, suggesting oxidative stress as a factor that can serve as a POI biomarker.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.