Abstract
Abstract Knowledge of extreme pressures and fluctuations within stilling basins is of the utmost importance, as they may cause potential severe damages. It is complicated to measure the fluctuating pressures of hydraulic jumps in real-scale structures. Therefore, little information is available about the pressure fluctuations in the literature. In this paper, minimal and maximal pressures were analyzed on the flat bed of a stilling basin downstream of an Ogee spillway. Attention has been focused on dimensionless pressures related to the low and high cumulative probabilities of occurrence (P*0.1% and P*99.9%), respectively. The results were presented based on the laboratory-scale experiments. These parameters for the relatively high Froude numbers have not been investigated. The total standard uncertainty for the dimensionless mean pressures (P*m) was obtained around 1.87%. Spectral density analysis showed that the dominant frequency in the classical hydraulic jumps was about 4 HZ. Low-frequency of pressure fluctuations indicated the existence of large-scale vortices. In the zone near the spillway toe, P*0.1% reached negative values of around −0.3. The maximum values of pressure coefficients, namely |CP0.1%|max and CP99.9%max, were achieved around 0.19 and 0.24, respectively. New original expressions were proposed for P*0.1% and P*99.9%, which are useful for estimating extreme pressures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.