Abstract
This paper proposes a parametric programming approach to analyze the fuzzy maximum total return in the continuous knapsack problem with fuzzy objective weights, in that the membership function of the maximum total return is constructed. The idea is based on Zadeh’s extension principle, α-cut representation, and the duality theorem of linear programming. A pair of linear programs parameterized by possibility level α is formulated to calculate the lower and upper bounds of the fuzzy maximum total return at α, through which the membership function of the maximum total return is constructed. To demonstrate the validity of the proposed procedure, an example studied by the previous studies is investigated successfully. Since the fuzzy maximum total return is completely expressed by a membership function rather than by a crisp value reported in previous studies, the fuzziness of object weights is conserved completely, and more information is provided for making decisions in real-world resource allocation applications. The generalization of the proposed approach for other types of knapsack problems is also straightforward.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have