Abstract

The fractional knapsack problem to obtain an integer solution that maximizes a linear fractional objective function under the constraint of one linear inequality is considered. A modification of the Dinkelbach's algorithm [3] is proposed to exploit the fact that good feasible solutions are easily obtained for both the fractional knapsack problem and the ordinary knapsack problem. An upper bound of the number of iterations is derived. In particular it is clarified how optimal solutions depend on the right hand side of the constraint; a fractional knapsack problem reduces to an ordinary knapsack problem if the right hand side exceeds a certain bound.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.