Abstract

Most current methods for analysing the activity of LPMO are based on the quantification of H2O2, a side product of LPMO; however, these methods cannot assay the LPMO activity of thermophilic fungi because of the low thermostability of H2O2. Therefore, we present a high-performance liquid chromatography-refractive index detector (HPLC-RID) method to assay the LPMO activity of the thermophilic fungus Thermoascus aurantiacus. According to the established method, the specific activities of nTaAA9A C1 and C4 oxidation were successfully analysed and were 0.646 and 0.574 U/mg, respectively. By using these methods, we analyzed the C1 and C4 oxidation activities of the recombinant TaAA9A (rTaAA9A) and mutated rTaAA9A (Y24A, F43A, and Y212A) expressed in Pichia pastoris. The specific activities of rTaAA9A C1 and C4 oxidation were 0.155 and 0.153 U/mg, respectively. The specific activities of Y24A, F43A, and Y212A C1 and C4 oxidation were 0.128 and 0.125 U/mg, 0.194 and 0.192 U/mg, and 0.097 and 0.146 U/mg, respectively. In conclusion, the method can assay the LPMO activity of thermophilic fungi and directly target C1 and C4 oxidation, which provides an effective activity assay method for LPMOs of thermophilic fungi.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.