Abstract

BackgroundPolysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose. However, currently no direct evidence exists that PMOs oxidize C6 positions in cellulose, and molecular mechanism of C1, C4 and C6 oxidation is unclear.ResultsIn this study, a PMO gene (Ctpmo1) belonging to AA9 was isolated from Chaetomium thermophilum and successfully expressed and correctly processed in Pichia pastoris. A simple and effective chemical method of using Br2 to oxidize CtPMO1 reaction products was developed to directly identify C4- and C6-oxidized products by matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF–MS). The PMO (CtPMO1) cleaves phosphoric acid-swollen cellulose (PASC) and celloheptaose, resulting in the formation of oxidized and nonoxidized oligosaccharides. Product identification shows that the enzyme can oxidize C1, C4, and C6 in PASC and cello-oligosaccharides. Mutagenesis of the aromatic residues Tyr27, His64, His157 and residue Tyr206 on the flat surface of CtPMO1 was carried out using site-directed mutagenesis to form the mutated enzymes Y27A, H64A, H157A, and Y206A. It was demonstrated that Y27A retained complete activity of C1, C4, and C6 oxidation on cellulose; Y206A retained partial activity of C1 and C4 oxidation but completely lost activity of C6 oxidation on cellulose; H64A almost completely lost activity of C1, C4, and C6 oxidation on cellulose; and H157A completely lost activity of C1, C4, and C6 oxidation on cellulose.ConclusionsThis finding provides direct and molecular evidence for C1, C4, especially C6 oxidation by lytic polysaccharide monooxygenase. CtPMO1 oxidizes not only C1 and C4 but also C6 positions in cellulose. The aromatic acid residues His64, His157 and residue Tyr206 on CtPMO1 flat surface are involved in activity of C1, C4, C6 oxidation.

Highlights

  • Polysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose

  • The C1 oxidation leads to the formation of sugar lactone, which is spontaneously hydrolyzed into aldonic acid, and the C4 and C6 oxidations lead to the formation of C4-ketoaldose [8, 11, 12, 16, 17, 20, 21] and C6-hexodialdose [7, 15], respectively

  • The KC441882 gene was designated as Ctpmo1, encoding a putative AA9 PMO protein, a PMO from Chaetomium thermophilum (CtPMO1)

Read more

Summary

Introduction

Polysaccharide monooxygenases (PMOs) of the auxiliary activity 9 (AA9) family have been reported to oxidize C1, C4, and C6 positions in cellulose. Currently no direct evidence exists that PMOs oxidize C6 positions in cellulose, and molecular mechanism of C1, C4 and C6 oxidation is unclear. The low degradation efficiency and the high cost of cellulases are major barriers to economical biofuel Based on their amino acid sequence similarities, PMO enzymes are classified into four families: auxiliary activity 9 (AA9), auxiliary activity (AA10), auxiliary activity (AA11), and auxiliary activity 13 (AA13) [4, 9, 10]. With respect to the oxidation position of substrate molecules, AA9 PMO enzymes have demonstrated striking differences in regioselectivities, most possibly because of their multigenicity [4, 11]. PMO C6 oxidation has remained elusive and considerable academic debate is being conducted regarding PMO C6 oxidation [11, 12, 17, 21, 22]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call