Abstract

Simple SummaryThe differentiation of germ cells plays an important role in sex differentiation in poultry. Therefore, it is necessary for us to explore the potential regulators in the process of germ cell development. In this study, RNA-seq was used to detect the expression profile of long non-coding RNAs (lncRNAs) in chicken embryonic stem cells (ESCs), primordial germ cells (PGCs) and spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Functional analysis of the target genes of DELs showed that autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB signaling pathways were involved in the differentiation process of male germ cells and, moreover, XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were predicted to be the key lncRNAs in this process. Our findings could not only supply scientific data for constructing the gene regulatory network of germ cell development, but also provide new ideas for further optimizing the induction efficiency of germ cells in vitro.Germ cells have an irreplaceable role in transmitting genetic information from one generation to the next, and also play an important role in sex differentiation in poultry, while little is known about epigenetic factors that regulate germ cell differentiation. In this study, RNA-seq was used to detect the expression profiles of long non-coding RNAs (lncRNAs) during the differentiation of chicken embryonic stem cells (ESCs) into spermatogonial stem cells (SSCs). The results showed that a total of 296, 280 and 357 differentially expressed lncRNAs (DELs) were screened in ESCs vs. PGCs, ESCs vs. SSCs and PGCs vs. SSCs, respectively. Gene Ontology (GO) and KEGG enrichment analysis showed that DELs in the three cell groups were mainly enriched in autophagy, Wnt/β-catenin, TGF-β, Notch and ErbB and signaling pathways. The co-expression network of 37 candidate DELs and their target genes enriched in the biological function of germ cell development showed that XLOC_612026, XLOC_612029, XLOC_240662, XLOC_362463, XLOC_023952, XLOC_674549, XLOC_160716, ALDBGALG0000001810, ALDBGALG0000002986, XLOC_657380674549, XLOC_022100 and XLOC_657380 were the key lncRNAs in the process of male germ cell formation and, moreover, the function of these DELs may be related to the interaction of their target genes. Our findings preliminarily excavated the key lncRNAs and signaling pathways in the process of male chicken germ cell formation, which could be helpful to construct the gene regulatory network of germ cell development, and also provide new ideas for further optimizing the induction efficiency of germ cells in vitro.

Highlights

  • Germ cells are a kind of special cell in sexually reproducing organisms which play a pivotal role in transmitting genetic information from ancestors to future generations

  • Before the RNA-seq, chicken embryonic stem cells (ESCs), primordial germ cells (PGCs) and spermatogonial stem cells (SSCs) were collected by flow cytometry after double labeling of specific antibodies (Figure 1)

  • A total of 703,283,306 raw reads were gathered, in which the proportion of N was more than 10% and the adapters were removed

Read more

Summary

Introduction

Germ cells are a kind of special cell in sexually reproducing organisms which play a pivotal role in transmitting genetic information from ancestors to future generations. Inducing embryonic stem cells (ESCs) into germ cells, such as primordial germ cells (PGCs) and spermatogonial stem cells (SSCs), by adding cytokines and chemical induction reagents to culture medium or through transgenic technologies, has an become important way to explore the formation and differentiation mechanisms of germ cells [1,2,3]. These studies provided new strategies for the development of regenerative medicine and the treatment of reproductive diseases like infertility. LncRNAs can work as ceRNAs to modulate transcription by sequestering transcription factors, catalytic proteins or miRNAs [6]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call