Abstract

This article reports on the optical properties of Sm3+-activated GdB3O6 phosphors based on the measurement of their photoluminescence spectra and luminescence decay curves. Energy transfer from Gd3+ to Sm3+ and the concentration quenching of the Sm3+ ion emission are investigated. From the photoluminescence spectra and decay curves, the energy transfer from Gd3+ to Sm3+ is confirmed. The concentration quenching of the Sm3+ ion emission can be ascribed to resonant cross-relaxation. The interaction between the Sm3+ ions is derived of the electric dipole–dipole type through fitting the data with the Inokuti-Hirayama model. The critical distances and energy transfer microparameter for the transfer processes are given. The decay curves of Sm3+4G5/2 level exhibiting a buildup and decay process also confirm the energy transfer from Gd3+ to Sm3+ and between Sm3+ ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call