Abstract

Abstract For glass ceramics, glass crystallization and doping activators into nanocrystalline phases are the key factors determining optical performance, including energy transfer (ET) process. Herein, we propose a strategy to verify ET behaviors based on glass crystallization, elaborately selecting phase-transformed NaYF4: Tb3+, Eu3+ nanocrystals embedded transparent glass ceramics as a typical example. The ET behaviors from Tb3+ to Eu3+ are clarified via photoluminescence spectra, time-resolved spectra and decay curves. Impressively, the corresponding ET process in cubic NaYF4 turns out to be more efficient than that in hexagonal, in spite of a disorder-to-order transformation from cubic to hexagonal. The reason for this abnormal ET efficiency is that dopants prefer to be partitioned into the cubic NaYF4 rather than the hexagonal one during glass crystallization. This work provides keen insights into the relationship between glass crystallization and ET behaviors, which can also feed back to helpfully guide the design and fabrication of glass ceramics with superior optical performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call