Abstract

Si dissolution into Ge melt, solute transport in the Si–Ge solution and crystal growth of SiGe alloys were in situ observed by X-ray penetration method. The rectangular shaped sandwich sample of Si (seed)/Ge/Si (feed) was used for the experiment. X-ray intensities penetrated through the sample, which was heated up to the growth temperature of 1200°C, were recorded by rectangular shaped CdTe line sensor as a function of time and temperature. The experimental results demonstrated that the dissolution of Si seed was larger compared to Si feed crystal although Si feed temperature was relatively higher than that of seed. Crystal growth of SiGe was observed at the feed interface as the growth interface was observed clearly by an abrupt change of penetrated X-ray intensity near the growth interface. Since the crystal grew with Si rich composition (at high temperature 1200°C), solution becomes Ge richer which causes penetrated X-ray intensity variation at the growth interface. The growth mechanism for the observed SiGe growth process was discussed based on the penetrated X-ray intensity profile and a growth model. The composition of the grown sample was measured by FE-EPMA analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.