Abstract

Abstract The paper presents the analysis of the three-dimensional strain state for the cogging process of the Ti-6Al-4V alloy using the finite element method, assuming the rigid-plastic model of the deformed body. It reports the results of simulation studies on the metal flow pattern and thermal phenomena occurring in the hot cogging process conducted on three tool types. The computation results enable the determination of the distribution of effective strain, effective stress, mean stress and temperature within the volume of the blank. This solution has been complemented by adding the model of microstructure evolution during the cogging process. The numerical analysis was made using the DEFORM-3D consisting of a mechanical, a thermal and a microstructural parts. The comparison of the theoretical study and experimental test results indicates a potential for the developed model to be employed for predicting deformations and microstructure parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.