Abstract

Recurrent event data frequently arise in practice, and in some cases, the event process has cyclic or periodic components. We propose a semiparametric rate model with multiple event types that have such features. Generalized estimating equations are used for the estimation of regression coefficients after profiling the baseline rate function with a fully nonparametric estimator. The proposed estimators are shown to be consistent and asymptotically Gaussian. Their finite-sample behavior is assessed through simulation experiments. The predictability of the model with and without the cyclic component is also compared. With the cyclic component, our model improves the predictability of a conventional model without the cyclic feature. Data on recurrent fire alarms in Blenheim, New Zealand, are used for illustration purposes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.