Abstract
Recurrent event data are frequently encountered in clinical and observational studies related to biomedical science, econometrics, reliability and demography. In some situations, recurrent events serve as important indicators for evaluating disease progression, health deterioration, or insurance risk. In statistical literature, non informative censoring is typically assumed when statistical methods and theories are developed for analyzing recurrent event data. In many applications, however, there may exist a terminal event, such as death, that stops the follow-up, and it is the correlation of this terminal event with the recurrent event process that is of interest. This work considers joint modeling and analysis of recurrent event and terminal event data, with the focus primarily on determining how the terminal event process and the recurrent event process are correlated (i.e. does the frequency of the recurrent event influence the risk of the terminal event). We propose a joint model of the recurrent event process and the terminal event, linked through a common subject-specific latent variable, in which the proportional intensity model is used for modeling the recurrent event process and the additive hazards model is used for modeling the terminal event time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.