Abstract

Tin monoxide (SnO) has drawn much attention in recent years due to its high hole mobility, transparency, and potential for mass production. However, due to its metastable nature, the deposited film often contains multi-phases such as metallic tin and tin dioxide, which may degrade its electrical properties. Here, we presented the temperature dependent characteristics of p-type SnO thin-film transistors. The hole transport mechanism is dominated by band conduction at high temperatures and variable-range hopping at low temperatures. The maximum activation energy was found to be 308 meV, which denotes a bandgap of around 0.6 eV. The density of states was found to be 1.12 × 1021 cm−3 eV−1 at VG = −80 V, and 6.75 × 1020 cm−3 eV−1 at VG = 0 V, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.