Abstract
In the area of nanotechnology, carbon nanotubes are a notable and remarkable invention. Its structure is much similar to the structure of graphite. CNTs are small in size, light in weight, have good strength, and have good conductivity, making them the building blocks of futuristic new technologies. CNTs have promised to be the catalyst for the next revolution in technology. A broad range of processes are available to produce various types of CNTs, depending on the rolling times of graphite sheets. In this paper, different types of CNTs, their properties, ways of synthesis such as the arc discharge method and chemical vapor deposition, and application have been covered. Outlining their respective advantages and challenges. SWCNTs exhibit high carrier mobilities and tunable bandgaps, making them suitable for transistor devices and interconnects in integrated circuits. DWCNTs offer enhanced mechanical stability and electrical conductivity, catering to applications in flexible electronics and energy storage devices. MWCNTs, though lacking distinct properties of SWCNTs and DWCNTs, find utility in composites, sensors, and biomedical devices due to their ease of synthesis and lower cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have