Abstract
Discards from commercial fisheries have been linked to detrimental effects on ecosystems and stocks of living marine resources. Understanding spatial and temporal patterns of discards may assist in devising regulatory practices and mitigation strategies and promote sustainable management policies. This study investigates data from bycatch monitoring programs using a machine learning approach. We used a gradient boosting classifier for describing catch and bycatch patterns in the U.S. Mid-Atlantic Black Seabass (Centropristis striata), Summer Flounder (Paralichthys dentatus), Scup (Stenotomus chrysops), and Longfin Squid (Doryteuthis pealeii) fisheries. We used oceanographic, biological, spatial, and fisheries data as explanatory model features. We found positive associations between target species volume and bycatch. Although we found that sea surface temperature and year were important model features, the direction of impact of those predictors was variable. From our findings, we conclude that machine learning approaches are promising in supplementing traditional methodologies, especially with the increase in data availability trends.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have