Abstract

In this letter, we propose and analyze an ultra-compact wavelength filter on silicon-based hybrid plasmonic waveguides, which confines light in a nanometeric silica dioxide layer between the silicon substrate and metal cap. The filter consists of a stub structure coupled to a straight waveguide. The three-dimensional finite-difference time-domain (FDTD) method is applied to calculate the spectral responses of such devices. Similar resonant behaviors are obtained since those devices are based on two-dimensional Metal-Insulator-Metal waveguide structure. Results also show that by adding stubs and tuning the distance between stubs can further improve the device's performance and shape the spectral response to some extent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.