Abstract

AbstractMicroplastics are emerging contaminants that undergo progressive aging under environmental conditions such as sunlight irradiation, mechanical forces, temperature variations, and the presence of biological organisms. Since aging modifies microplastic properties, such as their own toxicity and the toxicity of trapped pollutants, advanced methods to analyze microplastics are required. Here we review methods to analyze microplastic aging with focus on the aging process, qualitative identification, quantitative characterization, and chemometrics. Qualitative identification is done by mechanical techniques, thermal techniques, e.g., thermal degradation and gas chromatography–mass spectrometry, and spectral techniques, e.g., infrared, Raman, fluorescent, and laser techniques. Quantitative characterization is done by microscopy and mass spectrometry. Microplastic aging results in a series of surface physical changes, biofilm formation, chemical oxidation, thermal alternation, and mechanical deterioration. Changes in mechanical and thermal properties allow to differentiate aged microplastics. Infrared and Raman spectroscopy are rapid and sensitive for chemical identification of microplastics in complex environmental samples. Combining two techniques is preferable for accurate detection and categorization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call