Abstract
Declining grade of primary ores and resource efficiency have led us to process more alternative metal resources such as e-waste. One of the processing routes for extracting valuable metals from e-waste is through the black copper smelting. However, the underlying knowledge of the thermodynamics behaviour of the valuable metals contained in e-waste during smelting are limited which prevent us from developing an optimised process to recover all the metals. These different metals clearly will have different favourable conditions for their extraction. To illustrate this, the distribution behaviour of germanium (Ge) and palladium (Pd) between liquid copper and ferrous-calcium-silicate slag during black copper smelting was analysed. It was demonstrated that oxygen partial pressure and slag composition affect the partitioning of these metals to the copper phase and the favourable slag chemistry for recovering these metals is opposing. Considering the available thermodynamic data of these metals, an analysis for the optimum conditions is presented.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have