Abstract

In this paper, we study SAT and MAX-SAT using the integer linear programming models and L-partition approach. This approach can be applied to analyze and solve many discrete optimization problems including location, covering, scheduling problems. We describe examples of SAT and MAX-SAT families for which the cardinality of L-covering of the relaxation polytope grows exponentially with the number of variables. These properties are useful in analysis and development of algorithms based on the linear relaxation of the problems. Besides we present the L-class enumeration algorithm for SAT using the L-partition approach. In addition we consider an application of this algorithm to construct exact algorithm and local search algorithms for the MAX-SAT problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.