Abstract

Compact physical models are presented for on-chip double-sided shielded transmission lines, which are mainly used for long global interconnects where inductance effects should not be ignored. The models are then used to optimize the width and spacing of long global interconnects with repeater insertion. The impacts of increasing line width and spacing on various performance parameters such as delay, data-flux density, power dissipation and total repeater area are analysed. The product of data-flux density and reciprocal delay per unit length are defined as a figure of merit (FOM). By maximizing the FOM, the optimal width and spacing of shielded RLC global interconnects are obtained for various international technology roadmap for semiconductors (ITRS) technology nodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call