Abstract

A semiquantitative characterization of the interfacial adhesion of phase change materials is developed, which consists of determining critical adhesion temperature (TCA) via measuring the probability of adhesion failure with temperature using patterned films. By comparison of TCA values, Ge-doped SbTe (Ge-ST) is shown to have weaker adhesion than Ge2Sb2Te5 (GST), which results from its limited ability in relaxation of crystallization-induced stress. Nitrogen or oxygen doping in Ge-ST produces significant increase in TCA, close to that of GST. This improvement is due to smaller grain size of N-/O-doped Ge-ST, which facilitates the relaxation of the stress via grain boundary diffusion or sliding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.