Abstract

SUMMARY The theory of non-oscillatory scalar schemes is developed in this paper in terms of the local extremum diminishing (LED) principle that maxima should not increase and minima should not decrease. This principle can be used for multi-dimensional problems on both structured and unstructured meshes, while it is equivalent to the total variation diminishing (TVD) principle for one-dimensional problems. A new formulation of symmetric limned positive (SLIP) schemes is presented, which can be generalized to produce schemes with arbitrary high order of accuracy in regions where the solution contains no extrema, and which can also be implemented on multi-dimensional unstructured meshes. Systems of equations lead to waves travelling with distinct speeds and possibly in opposite directions. Alternative treatments using characteristic splitting and scalar diffusive fluxes are examined, together with a modification of the scalar diffusion through the addition of pressure differences to the momentum equations to...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call