Abstract
The performance of standard cells has a strong impact on the performance of a circuit synthesized with the cells. Although a complementary CMOS logic is usually used in the standard cells, it is known that a pass transistor logic can improve the performance of a circuit with a smaller area in some cases. We evaluate different types of XOR cells in different voltage conditions. Results show that the dual pass transistor XOR has a better performance than the complementary CMOS XOR in 0.6V operation, while the complementary CMOS XOR has a better performance in 1.2 V operation. More specifically, the area and the power consumption of a benchmark circuit composed of the dual pass transistor XOR can be reduced by 24% and 35%, respectively, compared to those of the same circuit composed of the complementary CMOS XOR in 0.6V operation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.