Abstract

The rotational inertial navigation system (INS) has received wide attention in recent years because it can achieve high precision without using costly inertial sensors. However, the introduction of the turntable causes additional errors, including mounting errors between the inertial measurement unit (IMU) axes and the turntable axes. Analysis, calibration and compensation of the mounting errors are necessary in rotational INS. In this paper, the mounting errors are introduced into the sensor model of a dual-axis rotational INS. Analysing the improved model indicated that the mounting errors’ effect on the IMU errors is inconspicuous, but the effect on the output attitude is significant. If the output attitude is not required, the mounting errors can be ignored; conversely, it is important to calibrate and compensate for such errors. A calibration method for the mounting errors is designed using the thin-shell (TS) algorithm, and the method's precision has the same order of magnitude as the residuals of gyro misalignment in the simulation test. Laboratory experimental results validate the theory and proved that the calibration and compensation method for mounting errors proposed in this paper helps improve the output attitude's precision without a precise installation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call