Abstract

The dual-axis rotational inertial navigation system (INS) with dithered ring laser gyro (DRLG) is widely used in high precision navigation. The major inertial sensor errors such as drift errors of gyro and accelerometer can be averaged out, but the G-sensitive drifts of laser gyro cannot be averaged out by indexing. A 16-position rotational simulation experiment proves the G-sensitive drift will affect the long-term navigation error for the rotational INS quantitatively. The vibration coupling and asymmetric structure of the DRLG are the main errors. A new dithered mechanism and optimized DRLG is designed. The validity and efficiency of the optimized design are conformed by 1 g sinusoidal vibration experiments. An optimized inertial measurement unit (IMU) is formulated and measured experimentally. Laboratory and vehicle experimental results show that the divergence speed of longitude errors can be effectively slowed down in the optimized IMU. In long term independent navigation, the position accuracy of dual-axis rotational INS is improved close to 50%, and the G-sensitive drifts of laser gyro in the optimized IMU are less than 0.000 2 °/h. These results have important theoretical significance and practical value for improving the structural dynamic characteristics of DRLG INS, especially the high-precision inertial system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call