Abstract

A two-phase non-isothermal model is developed to explore the interaction between heat and water transport phenomena in a PEM fuel cell. The numerical model is a two-dimensional simulation of the two-phase flow using multiphase mixture formulation in a single-domain approach. For this purpose, a comparison between non-isothermal and isothermal fuel cell models for inlet oxidant streams at different humidity levels is made. Numerical results reveal that the temperature distribution would affect the water transport through liquid saturation amount generated and its location, where at the voltage of 0.55 V, the maximum temperature difference is 3.7 °C. At low relative humidity of cathode, the average liquid saturation is higher and the liquid free space is smaller for the isothermal compared with the non-isothermal model. When the inlet cathode is fully humidified, the phase change will appear at the full face of cathode GDL layer, whereas the maximum liquid saturation is higher for the isothermal model. Also, heat release due to condensation of water vapor and vapor-phase diffusion which provide a mechanism for heat removal from the cell, affect the temperature distribution. Instead in the two-phase zone, water transport via vapor-phase diffusion due to the temperature gradient. The results are in good agreement with the previous theoretical works done, and validated by the available experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call