Abstract
Assume that G = (V;E) is an undirected and connected graph with vertex set V and edge set E. D is called a dominating set of the vertex in G such that for each vertex v 2 V one of: v 2 D or a neighbor u of v in D with u 2 D. While locating dominating set of G is a dominating set D of G when satisfy this condition: for every two vertices u; v 2 (V D);N(u) \ DN(v) \ D. The minimum cardinality of a locating dominating set of G is the location domination number L(G). In this paper, locating dominating set and location domination number of special graph and edge comb product operation result will be determined. Location domination number theorem on triangular book graph Btn and edge comb product operation result that is Cm D Btn and Sm D Btn are the results from this experiment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.