Abstract

To enable automatic analysis of athletic movement, the first task is to recognize the athletic movements to be analyzed from a continuous motion data stream. Automated detection of athletic movement and the isolation of the recruited body parts would enable the analysis of sporting movements for improving sports performance and preventing possible injuries. In this paper, an unsupervised method for detecting and isolating athletic movements is proposed. Given motion capture data, the method automatically identifies when athletic movements are being performed and the body parts involved using the concepts of the manipulability and kinematic dimensionality reduction. Experiments demonstrate the ability of the proposed approach to detect and isolate athletic movements from a variety of motion data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.