Abstract

In recent times, graphic, audio and video definition has improved due to significant advancement in complex algorithms and video processing techniques. These techniques require heterogeneous and multi-core processors because of their complex computation abilities. Dual-port memories have become an essential component of CPUs because multi-core processors require significant data transfer. However, dual-port memories come at a cost of increased area and leakage. In this paper, an ultra-high-density dual-port SRAM (RADPUHD) architecture is proposed which addresses area and leakage challenges. It is designed and fabricated in 16nm technology. This paper presents use of a single-port bitcell to achieve functionality of dual-port SRAM thus improving area efficiency. The use of latches for Port B signals instead of full flip-flops further reduces area. The proposed design is a bolt-on wrapper around a 6T single-port SRAM. This design achieved a memory density of 8.1Mb/mm2 chip area and achieved 53% area savings and approximately 60% leakage savings when compared to an 8T dual-port SRAM that was also fabricated in 16nm. Silicon results show that the proposed circuit is functional down to a minimum operating voltage of 520mV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call