Abstract
Metal additive manufacturing (AM) has garnered tremendous research and industrial interest in recent years; in the field, powder bed fusion (PBF) processing is the most common technique, with selective laser melting (SLM) dominating the landscape followed by electron beam melting (EBM). Through continued process improvements, these methods are now often capable of producing high strength parts with static strengths exceeding their conventionally manufactured counterparts. However, PBF processing also results in large and anisotropic residual stresses (RS) that can severely affect fatigue properties and result in geometric distortion. The dependence of RS formation on processing variables, material properties and part geometry has made it difficult to predict efficiently and has hindered widespread acceptance of AM techniques. Substantial investigations have been conducted with regards to RS in PBF processing, which have illuminated a number of important relationships, yet a review encompassing this information has not been available. In this review, we survey and assemble the knowledge existing in the literature regarding RS in PBF processes. A discussion of background mechanics for RS development in AM is provided along with methods of measurement, highlighting the anisotropic nature of the stress fields. We then review modeling efforts and in-process experimental measurements made to advance process understanding, followed by a thorough analysis and summary of the known relationships of both material properties and processing variables to resulting RS. The current state of knowledge and future research needs for the field are discussed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have