Abstract

This paper describes a new algorithm for the stochastic shortest path problem where path costs are a weighted sum of expected cost and cost standard deviation. We allow correlation between link costs, subject to a regularity condition excluding unbounded solutions. The chief complication in this variant is that path costs are not an additive sum of link costs. In this paper, we reformulate this problem as a conic quadratic program, and develop an outer-approximation algorithm based on this formulation. Numerical experiments show that the outer-approximation algorithm significantly outperforms standard integer programming algorithms implemented in solvers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.