Abstract
Spasticity is a common comorbidity of spinal cord injury (SCI), disrupting motor function and resulting in significant discomfort. While elements of post-SCI spasticity can be assessed using pre-clinical SCI models, the robust measurement of spasticity severity can be difficult due to its periodic and spontaneous appearance. Electrical stimulation of sensory afferents can elicit spasticity-associated motor responses, such as spasms; however, placing surface electrodes on the hindlimbs of awake animals can induce stress or encumbrance that could influence the expression of behaviour. Therefore, we have generated a mouse model of SCI-related spasticity that utilizes optogenetics to activate a subset of cutaneous VGLUT2+ sensory afferents to produce reliable incidences of spasticity-associated responses in the hindlimb. To examine the efficacy of this optogenetic SCI spasticity model, a T9-T10 complete transection injury was performed in Islet1-Cre+/-;VGLUT2-Flp+/-;CreON-FlpON-CatCh+/- mice, followed by the implantation of EMG electrodes into the left and right gastrocnemius and tibialis anterior muscles. EMG recordings were performed during episodic optogenetic stimulation (1-2 sessions per week until 5 weeks post-injury (wpi); n = 10 females, 5 males). A subset of these mice (n = 3 females, 2 males) was also tested at 10 wpi. During each recording session, an optic fiber coupled to a 470 nm wavelength LED was used to deliver 9 × 100 ms light pulses to the palmar surface of each hind paw. The results of these recordings demonstrated significant increases in the amplitude of EMG responses to the light stimulus from 2 wpi to 10 wpi, suggesting increased excitability of cutaneous sensorimotor pathways. Interestingly, this effect was significantly greater in the female cohort than in the males. Incidences of prolonged involuntary muscle contraction in response to the stimulus (fictive spasms) were also detected through EMG and visual observation during the testing period, supporting the presence of spasticity. As such, the optogenetic mouse model developed for this study appears to elicit spasticity-associated behaviours in SCI mice reliably and may be valuable for studying SCI-related limb spasticity mechanisms and therapeutic.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have