Abstract

This paper presents a novel channel-coding scheme called Binary to Gray Code Conversion based Error Detection and Correction (BGCC-EDAC) code to correct the maximum number of errors that occur at the receiving end during wireless transmission. The proposed method adds the parity bit using Binary to Gray Code Conversion (BGCC). The decoding algorithm proposed in this paper will not perform the regular Gray-to-Binary code conversion. Instead, a novel decoding algorithm is proposed to detect and correct most of the errors in the message bits. It will require retransmission only if any parity error occurs. The efficiency of the proposed channel code stems from its redundant bit calculation and decoding algorithm. The simulation results using Cadence 90 nm technology show that the proposed BGCC-EDAC code consumes low power, less area, and less propagation delay. Simulation analysis using MATLAB reveals that the proposed BGCC-EDAC outperforms the existing error-correcting codes in terms of BER performance. This makes the proposed BGCC-EDAC code, with a shorter code word length, highly suitable for high-speed, reliable data communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call