Abstract
Due to climate change, the temperature monitoring of reinforced-concrete (RC) structures is becoming critical for preventive maintenance and extending their lifespan. Significant temperature variations in RC elements can affect their natural frequencies and modulus of elasticity or generate abnormal stress levels, potentially leading to structural damage. Data from thermal monitoring systems are invaluable for testing and validating numerical methodologies for estimating internal thermal responses and aiding in prevention/maintenance decision making. Despite its importance, few experimental outdoor data on the internal and external temperatures of concrete structures are available. This study presents a comprehensive dataset from a 120-day temperature-monitoring campaign on a 1.2 m long reinforced-concrete slab-on-I-beam model under tropical conditions in Bucaramanga, Colombia. The monitoring system measured the internal temperatures at 40 points using embedded thermocouples, while the surface temperatures were recorded with handheld and drone-mounted thermal cameras. Simultaneously, the ambient temperature, solar radiation, rainfall, wind velocity, and other parameters were monitored using a weather station. The instrumentation ensured the synchronization and high spatial resolution of the thermal data. The data, collected at 30 min intervals, are openly available in CSV format, offering valuable resources for validating numerical models, studying thermal gradients, and enhancing structural health-monitoring frameworks.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have